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Abstract. Vibrational density of states of a classical two-dimensional electron system obtained
with a molecular-dynamics simulation is shown to have a peak in both solid and liquid phases.
From an exact diagonalization of the dynamical matrix, the peak is identified to be vibrational
modes having wavelengths of the order of the electron spacing, and the result is interpreted as
persistent vibrational modes with short wavelengths in a liquid.

It is an interesting question to ask to what extent vibrational modes remain well defined in
liquid states. A typical system that is known to have a solid–liquid transition is the classical
two-dimensional electron system (2DES; electrons interacting with the Coulomb repulsion in
a uniform neutralizing positive background), which has attracted a great deal of experimental
and theoretical interests, especially in the context of melting in two dimensions (see references
cited in [1]). A classical 2DES can be realized on a liquid–helium surface [2], where electrons
obey classical statistics since the Fermi energy is much smaller than the thermal energy. Both
experimental and numerical studies, including a recent one [1], show that the solid–liquid
transition occurs around the plasma parameter

0 ≡ (e2/4πεa)/kBT ' 130 (1)

wherea = (πn)−1/2 is the mean electron separation withn being the density of electrons.
Numerical simulations have been extensively done for the classical 2DES. In some of

the early studies with the molecular-dynamics (MD) method, which allows one to calculate
dynamical quantities as well as thermodynamic quantities, an oscillation is observed in the
velocity autocorrelation functionZ(t) ≡ 〈∑

i vi (t) · vi (0)
〉
/
〈∑

i v
2
i (0)

〉
, whose period is

almost independent of temperature [3, 4]. That is, the oscillation inZ(t) persists for large
t even in the liquid phase. These authors, however, do not give physical interpretations, and
this has motivated us to look into the problem in more detail.

We use the canonical MD method developed by Nosé [6] and Hoover [7] for 900 electrons
to investigate dynamical properties of a classical 2DES, while the previous simulations were
done for microcanonical ensembles for smaller systems. The aspect ratio of the unit cell is
taken to beLy/Lx = 2/

√
3, which can accommodate a perfect triangular lattice [5] with

N = 4M2 (M: an integer) electrons. We impose periodic boundary conditions and use the
Ewald sum to take care of the long-range nature of the Coulomb interaction.

First, we present the velocity power spectrum (vibrational density of states) in figure 1,
which corresponds to Fourier transform of the velocity autocorrelation (Wiener-Khinchin’s
theorem). The result shows that the spectrum at zero frequency, which is proportional to the
diffusion constant, is vanishingly small in the solid phase while finite in the liquid phase, in
agreement with the conventional view that diffusion distinguishes solids from liquids. As the
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Figure 1. MD result for the velocity power spectrum for various temperatures (∝ 1/0). Each
spectrum is shown with an offset in the vertical axis. The result is obtained by heating the system
from a solid to a liquid. The solid–liquid transition occurs at about0 = 130.

temperature increases (i.e., as0 decreases), the low-frequency components grow in the liquid
phase, indicating larger diffusion at higher temperatures.

Remarkably, we find a peak aroundω ≈ 1.2ω0 that persists when0 is decreased to
the liquid regime. Here the frequency is normalized byω0 ≡ (e2/

√
3εmd3)1/2, where

d = (
√

3n/2)−1/2 is the triangular lattice constant.ω0 is defined in such a way that the
longitudinal (plasma) mode hasω(q) = ω0(qd)

1/2 in the long wavelength limit [5]. For a
typical electron density on a liquid–helium surface,n = 1012 m−2,ω0 ∼ 4×1010 Hz. The peak
corresponds to the temporal oscillation in the velocity autocorrelation first observed in [3,4].
We have checked that the overall shape of the spectrum does not change significantly with the
sample size.

In order to identify the origin of the peak, we have exactly diagonalized the dynamical
matrix for the finite-size triangular electron solid, from which we obtain eigenfrequencies and
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Figure 2. Vibrational density of states for the triangular electron solid, obtained from an exact
diagonalization of the dynamical matrix.

eigenmodes. We find that the vibrational density of states (figure 2) qualitatively reproduces
the velocity power spectrum for the solid phase.

Typical vibrational modes around the high-frequency peak turn out to be those which
vibrate almost out of phase between nearest-neighbour particles with the wavelength∼ d, as
are typically depicted in figure 3. The fact that the peak persists in the liquid phase is considered
to imply that the liquid has, despite the absence of the long-range order, well defined local
configurations that can sustain large wave-number vibrations in finite spatial and temporal
domains.

(a) (b)

Figure 3. Typical vibrational modes around the high-frequency peak (indicated by an arrow in
figure 2) in the vibrational density of states. (a) and (b) have almost the same frequency (1.153 626
(a) and 1.156 830 (b) in units ofω0) but different wave vectors. A part of the triangular electron
solid is shown in either frame.
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Our calculation is done for the long-ranged Coulomb potential. It would be interesting to
compare the result with those for short-range potentials.

We would like to thank Professor Tsuneyoshi Nakayama for valuable comments. One of us
(SM) wishes to thank Dr Katsunori Tagami for discussions. The computations were mainly
done with Fujitsu VPP500 at the Supercomputer Centre, Institute for Solid State Physics,
University of Tokyo.
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